Pair of Linear Equations in two variables

Pair of Linear Equations in two variables:
   Linear Equations:An equation with highest power of the variable as 1 is called linear equation
               ex:    2x+5=7,  x+y=7,   5x=7  etc
   Linear Equations in two variables:If in a linear equation there is two variables it is called as linear        equation in two variable 
Pair of Linear Equations in two variables: the following are some of the examples of linear equation in two variables   2x + 3y = 5
                         x – 2y – 3 = 0



The general form for a pair of linear equations in two variables x and y is
  If we take the two of these linear equations geometrically one of the following case will be appeared
       (i) The two lines will intersect at one point.
       (ii) The two lines will not intersect, i.e., they are parallel.
       (iii) The two lines will be coincident.
      
Example 1 : Let us take the example given  Akhila goes to a fair with ` 20 and wants to have rides on the Giant Wheel and play Hoopla. Represent this situation algebraically and graphically (geometrically).
 Solution)   
                  The pair of equations formed is :
    i.e.,                    x – 2y = 0 -----------(1)
                             3x + 4y = 20---------- (2)
          Let us represent these equations graphically. For this, we need at least two solutions for each equation. We give these solutions in Table 
    Plot the points A(0, 0), B(2, 1)and P(0, 5), Q(4, 2), correspondingto the solutions in Table 3.1. Now draw the lines AB and PQ,representing the equations x – 2y = 0 and 3x + 4y = 20, as shown in Fig
                                       
the graphical representation 
                                            

                                                           EXERCISE 3.1
1. Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically

sol)      
             Let the present age of Aftab be "x"years and his daughters is "y"years.
            ATQ             
                                   x-7=7(y-7)----->  x-7y=-42
                                  x+3=3(y+3)-----> x-3y=6
                 
 The graphical representation is as follows
                                                            
2. The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
 sol)  
           let the price of bat be "x"rupees and ball be "y"rupees.
     hence, the situation algebraically 3x+6y=3900
                                                          x+3y=1300
                                           and,   
and points for first line is (300,500) and(100,600) for second equation(100,400) and (-200,500)
 by representing graphically we get 
                                                        
3. The cost of 2 kg of apples and 1kg of grapes on a day was found to be ` 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is ` 300. Represent the situation algebraically and geometrically.
sol)  
          let the cost of one kg apple be "x"rupees and grapes be "y" rupees
     ATQ   the situations algebraically  
                                          2x+y=160
                                          4x+2y=300
         the solutions for the above equations  are
                         
The points for first equations are (50,60) and (80,0)
and for second equations are (60,30) and(75,0)
      hence graphically  
                                                    
                                                           EXERCISE 3.2
1. Form the pair of linear equations in the following problems, and find their solutions graphically.
(i) 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.
 sol)
           let the number of girls be x and and number of boys be y
           ATQ                x+y=10             and       x-y=4
                        

 x 0 10
 y 10 0
                                                  and
 x 0 4
 y -4 0
Also the points for first equations are (0,10)and (10,0)
                            for second equations(0,-4)and(4,0)
        The graph of the situation as follows
                                                               
(ii) 5 pencils and 7 pens together cost ` 50, whereas 7 pencils and 5 pens together cost ` 46. Find the cost of one pencil and that of one pen
sol)    
            let cost of pencil be x rupees and pen be y rupees
          According to question   5x+7y=50 and 7x+5y=46
        so 
 x 3 10
 y 5 0
 and 
 x 8 3
 y -2 5
 the points for first line is (3,5) and (10,10) and for second line(8,-2) and (3,5)
 the graphical representation is as follows 
                                                                 
2. On comparing the ratios a1/a2,b1/b2 and c1/c2 , find out whether the lines representing the
following pairs of linear equations intersect at a point, are parallel or coincident
   (i) 5x – 4y + 8 = 0 ,7x + 6y – 9 = 0  (ii) 9x + 3y + 12 = 0,18x + 6y + 24 = 0
(iii) 6x – 3y + 10 = 0 ,2x – y + 9 = 0
Sol) 
       i) Given equations 5x – 4y + 8 = 0 ,7x + 6y – 9 = 0
         on comparing with 
                             
                                  

 so the lines are intersecting lines
        ii)Given equations  9x + 3y + 12 = 0,18x + 6y + 24 = 0
on comparing with      
                                                    
                                    
                                  there fore the given line are coincidental lines
       iii)Given equations6x – 3y + 10 = 0 ,2x – y + 9 = 0
            on comparing with
                      
                     
                     
                    There fore the lines are parallesl lines
4. Which of the following pairs of linear equations are consistent/inconsistent? If consistent, obtain the solution graphically:
  (i) x + y = 5, 2x + 2y = 10
      Sol) Given equations x + y -5= 0, 2x + 2y -10= 0
              on comparing with 
                                  
                              
                            
               so, the lines are coincidental lines are consistant with infinity solutions 
             there fore for every value of x we can get related y value.
   (ii) x – y = 8, 3x – 3y = 16 
      Sol) Given equationsx – y -8= 0, 3x – 3y-16 =0 
              on comparing with
               
             so,  
                  
                 therefore 
          hence the lines are parallell(inconsistant) , We cannot find common solution
  (iii) 2x + y – 6 = 0, 4x – 2y – 4 = 0 
             Sol) Given equations   2x + y – 6 = 0, 4x – 2y – 4 = 0 
                    on comparing with
                                   
                                   
                               so,
                                    
                                The lines are inter secting lines and consistant
             
           2x + y – 6 = 0------->y=6-2x and 
 x 0 3
 y 6 0
        
4x – 2y – 4 = 0 ------->y=2x-2
                       
 x 0 1
 y -2 0
      The graphical representation of these lines as follows
                                         
    There for the common solution of the equation is x=2, y=2 
  (iv) 2x – 2y – 2 = 0, 4x – 4y – 5 = 0
       Sol) Given equations are  2x – 2y – 2 = 0, 4x – 4y – 5 = 0
                 on comparing with          
                       we get 
                 so,     
                 hence 
               The lines are not consistant,not possible to find common solution

 5. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m. Find the dimensions of the garden.
      Sol)   let the width of garden be X m then length will be y m
            ATQ   y-x=4  and  x+y=36
             on comparing with   
                 
                    so ,     
                     hence,
                    WE can find the solution
                    y-x=4 ------>y=x+4 and y=-36-x
 x 0 -4
 y 4 0
 and   
 x 0 36
 y 36 0
    
                                                                                        
 the geometrical representation is
                                                        
                There fore the width s 16 and length is 20 

  6. Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is:
 (i) intersecting lines (ii) parallel lines (iii) coincident lines

Sol) i) 2x + 3y – 8 = 0    ii) 2x + 3y – 8 = 0  iii)2x + 3y – 8 = 0
            3x+2y-8=0              2x+3y+8=0            4x+6y-16=0
7. Draw the graphs of the equations x – y + 1 = 0 and 3x + 2y – 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.
Sol)  Given equations x – y + 1 = 0
                                   3x + 2y – 12 = 0
                                   graphical representation of the Equations is 
                                                                                   
                                The vertices of the triangle is (2,3), (-1,0) and (4,0)





























Previous
Next Post »

What changes in education after covid

What changes do you think should be made in the field of education after reopening the country and what innovative changes can be made in th...